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What' s that !?

e Shape optimization -
N

e Optimal sizing (thickness)

e Structural Mechanics




Cooperation -

e ENGEL-Group, Schwertberg(Austria),
Guelph (Canada), York (USA)

(2D-optimization, thickness- + shape optimization)

e SFB 013. Univ. Linz e.&
Computing

(FWF, federal province OO, city Linz)




Contents _

e Shape optimization of a machine frame
e Optimal sizing -4 -
e Mathematical abstractions

e Gradient calculation and Geometry




DER C-RAHMEN:

Das mechanische Kernstick einer holm-
los SpritzgieBmaschine.

Konstruktive Mafinahmen plus Analyse
des technischen Anforderungsprofiles ist
gleich patentierte Rahmenkonstruktion.
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|njection moulding mac

e Production of

— plastic pieces and tools
— high precision (3 gram, precision 1/100 mm)
— 30 work pieces per minute

e Clumping force to 4000 kN (~400 t)
e Mass to 25 tons
e Length to 3 meter




Would you like to try it

e 150tons clumping force per wing

[BMW, 130 km/h l
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Objectives of the proj ect_

e Mass reduction
e Shortening of development cycle

e Application of advanced math.
techniques on practical problems

e Development of new
optimization strategies




Geometry and constral
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Original and optimized
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Results of 2D shape optimizaiien
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Choice of model
for cast Iron frames _

2D 3D
low arithm. costs high costs
special geometry exact model
7

2D + thickness=2 1/2D
low arithm. costs
nearly a 3D-model
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2 1/2D : optimal sizing

e Sheet metal: discrete
thickness optimization

— a few parameters

e Cast iron: continuous
thickness optimization

— (arbitrary) many parameters

s Intelligent Optimization
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Optimal sizing :no hole S
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Optimal sizing: 1078 parametes
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Optimal sizing




Shape optimization _

VAV
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Results for more design pai

Pure AD |Hybrid |Hybrid |Hybrid

# param. 449 449 449 1078

# d.o.f. 7.518| 7.518| 29.402 9.028
File size 953 MB| 32MB| 129 MB| 78 MB
(tracing)

#iterations 800 800 800 2.200
CPU time 38,5 h 3,8h| 14,1h| 105,1h

T _optimizer 40h| 193h| 2,64h| 90,3h

T _gradient 18,0h| 054h| 3,35h 3,9h

T function 16,5h| 1,29h| 8,13 h 9,8 h N




Optimal Sizing: Future

e Optimal sizing as initial guess for shape
optimization

e Reduce #design parameters

e Use of B-splines in optimal sizing to reduce

b

number of design variables
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Comparison
Finite Adjoint Automatic
Differences |Method Diff.
Design Only a few |Adjustable |[many
parameters to nr. of
param.
Functional |[Very Rather Moderate
complex simple complex
Flexibility |high low high
lterative yes yes no
solvers
CPU-time |Very high low moderate




Optimal sizing :24 parat




Results for 24 design par

Finite Pure AD Hybrid

Differences Method
# param. 24 24 24
#d.o.f. 16.690 16.690 16.690
#iterations 83 100 100
#function 19.752 315 236
CPU time 12,6 h 8,4 h 0,4 h
T _optimizer 0,01h 0,03 h 0,01 h
T _gradient 12,40 h 6,00 h 0,18 h
T function 0,23 h 2,36 h 0,20 h
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Conclusions — part | _

e Flexible method for optimal sizing

e Objectives and constraints of moderate complexity

e |terative solvers for state equation

e Huge evaluation graphs are avoided

e Optimal sizing as initial guess for shape
optimization

e Use of B-splines in optimal sizing to reduce

number of design variables
B e




Mathematical descriptio

e Minimize a functional f Nf — O
f(u(Vvy),Vy) ® MINi o
e under the given constraints

e solving as direct problem the

- nDu- (I +mNdivu=>b
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Constraints _

e Besides an admissible geometry (V)

S(X)Es mises stress
a(x)Ea_ shrinking angle
t(x) £t tensile stress
" x 1T W(vy)
e and 7?7?77
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Functional e

f(v,,u,s,a) =w,_ >mass(v,)/m,
=W, X104(é [max(S (X+ U)/S max -1.0, O)]Z)
=W, , x104([max(a(x+ u)/a . -1.0, O)]Z)

=W, , a(x+u)/a g,

A~

. . 1
e Barrier functions | C

e weights W,, : criteria for engineer
e below barrier of angle: a (X+u)/a
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Optimization algorithm _

e Nonlinear box constraints N.I: _ O
e continuous subproblems

e Quasinewton method using

Up 7 Up - H -f1>Nf Up)
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Gradient of functional _

e When minimizing a functional f

f(u(vp, W(vp)), W(vp)) ® min.

L. df _ f f qu
e we need derivative W W +ﬂ_gW

. di _ i " u
sand finally & =7 T9omw ' =%np




- by finite differences

df(VD)—IIml[f(VD +te|)' f(VD)] I_]—nD

® requires |>n, +1| solves of direct

problem per step in optimization %
B




Direct method

- Tu _ Tb
KN_JZQ 4® %\If_ig-l-Kﬂ_\;i:_—

Tu— -1y M )
p ﬂVi_K >(ﬂVi ﬂvig

® results In derivatives of functional

o _ 9t g1 T ) .
dv, v, +‘|Tng v ﬂvig ' =Lng

o still direct solves needed 35




Adjcint methodl

e The substitution

o= (k] fz]) =

® requires solving of

e [1] adjoint problem |k T x4 [ I ] !
— u
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Adjoint method |

e Therefore

® requires solution of only direct
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Adjoint method 111~

e Matrix derivatives

TKVp . X(Vp)) — €K 4 K X
v v + X ><ﬂvi = 1ng

. . K JIs 1
e Optimal sizing: Jﬂ]\,ﬁ easy, s’ 0
e Shape optimization: Jﬂ]\*f__: 0

: K _IX
coding for “ox X
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Automatic Differentiati

df

e Calculate rva via a routine derived
|

from the code for calculating f

e ADOL-C [A. Griewank, Dresden]

. . EVALUATING DERIVATIVES
(r u n t I m e g e n e r a-t I O n Of Principles and Techniques of Algorithmic Differentiation

A - - f
LT A ¥
ol )

. ﬂ' O-forward Y

evaluation graph)

ik = [gF (el = g[F'(z)2] = gy
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Now a major SIAM Publication, Directed by Andreas Griewank




Hybrid Method (AD + adjo1t)

d_f_ﬂf ﬂf K)
+ ><K >‘( v Y

- oo I A
Automatic differentiation: VR

b K K X

Coded in subroutines: VR, % ! v
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Shape Optimization - Gra_

Design functional evaluation means:

1) Take a set of designparameters

2) Generate the geometrical shape

3) Create a mesh for the current shape
4) Calculate the solution on the current mesh

5) Evaluate the objective
B e
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Evaluating the functional NS

1) Parameters

2) Shape Cotner point Circular boundary element
3) Mesh . TN

4) Solution / J \

(PX:PY) (ﬂlx,ﬂlj?,l')




Evaluating the functional

1) Parameters 1 .
- X [N
3) Mesh ) . |
4) Solution




Evaluating the functional

1) Parameters N

2) Shape
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Evaluating the functio

1) Parameters

2) Shape [
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More about derivatives _

...but there are also dependencies
on the design parameters.

46

The functional depends on the displacements...
...for example by angular constraints...




Calculating the derivative

So what we really get when calculating the derivative
of K looks actually like that (written in avery crude,
but intuitive way...):

Though mathematically ssimple, this gets

rather complicated to implement (eg. Changing
a radius changes two tangential points and
therefore the two adjacient straight lines)

a7




Calculating the derivative

So what we really get when calculating the derivative
of K looks actually like that (written in avery crude,
but intuitive way...):

This means differentiating the solution of the linear
elastic subproblem by the dirichlet boundary values.
In adirect approach this requires the solution of one
field problem per parameter.

48




Calculating the derivative

So what we really get when calculating the derivative
of K looks actually like that (written in avery crude,
but intuitive way...):

Finally this can be reduced to differentiati ng the
element matrices with respect to their respective
cornerpoints, which is fairly uncomplicated.
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A closer look at K _

The Stiffness Matrix K is usually calculated as
the sum of all Element Stiffness M atrices.

K: éCeT xKe>Ce

Elements

These, of course, depend on the corner points of

their respective element. P3 (xy)
Element e

Asthese are part of the mesh, Pl (xy)

K depends on the mesh. P2 (xy)

50




The mesh mapping | _

Themesh naturally depends on the outer shape.

But generating a new mesh for each outer shape
leads to serious problems:

« Similar shapes may lead to locally completely
different meshes, the mapping is not continuous,
and therefore of course not differentiable.

e Mesh generation Is time consuming.

Sill




The mesh mapping || _

A better ideaisto deform the mesh in away that it

fitsinto the new outer shape. A first approach takes
two steps:

1) Map surface nodes to
the new outer shape

2) Use smoothing algorithm
to improve mesh (eg.Jacobi)

52




The mesh mapping || _

A better ideaisto deform the mesh in away that it

fitsinto the new outer shape. A first approach takes
two steps:

1) Map surface nodes to
the new outer shape

2) Use smoothing algorithm
to improve mesh (eg.Jacobi)

Problem: The mapping is differentiable, but it takes
many smoothing steps to obtain a reasonable mesh.
Hard to get rid of overlapping elements! =3




The mesh mapping I _

Finally agood (and also very intuitive) approach is
to solve an elastic subproblem for the mesh.

This strategy is.

Fast

It is possible to use highly advanced solution strategies
for the linear FEM system involved. The computation
time no longer depends on the degree of deformation
(as was the case for the Jacobi smoother)




The mesh mapping I _

Finally agood (and also very intuitive) approach is
to solve an elastic subproblem for the mesh.

This strategy is.

Fast - Stable

The quality of the resulting mesh is usually very good.
This has adirect influence on the stability and speed
of the FEM cal culations needed for the objective (as
they are calculated on this mesh).
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The mesh mapping I _

Finally agood (and also very intuitive) approach is
to solve an elastic subproblem for the mesh.

This strategy is.

Fast - Stable - Flexible

There are anumber of rather easy approaches to

further improve the quality of the resulting mesh (eg.
Increasing the stiffness of small mesh elements and thus
keeping them from overlapping). The parameters of the
elastic problem offer avariety of possibilities.

56




The mesh mapping I _

Finally agood (and also very intuitive) approach is
to solve an elastic subproblem for the mesh.

This strategy is.

o - Differentiable

Movie!ll nentfidd) of thelinear elastic
entiably on the dirichlet
herefore the mapping from outer

‘ snape to resulting mesh is differentiable as well.

S7
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The shape mapping _

Thefirst thing one has to do is to map the design
parameters to the outer shape of the geometry. The
mathematical complexity of thisis (for the ssmple
approach using only straight lines and circular
boundary elements) low, but the implementation
can become very tricky.

right combination of tangential points

59




Summary: Shape Opiti mi_

M esh defor mation and especially mesh defor mation
with linear elasticity algorithms highly improve
speed and stability of shape optimization.

Thiswill be especially important for future full 3D
applications (enormous increase of e ements).

Furthermore it would be useful to implement a more
genera approach to shape description (splines...)

60




Optimal Sizing — smoothit

e Matrix derivatives
TKMp.S(Wp)) — K 4 TK 5Ts — IK s

™, v @ s ‘v fs v, ' “Lnp
K — K Is 1
v 0 s ! qv 0

® Thickness distribution function
S(X) = s(Vv; (X))
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B-Spline surface _

e B-splines
— Used in CAD-systems
— Tensor product mesh
— Local (cubic) Bezier-functions

e Tensor product to form 2D-surface
— Smooth 2D-surface
— Rectangular domain
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B-Spline surface ||

e Tensor product
— Non-trivial domain??

e Trigger surface
— More Bezier-coeff.
— Than design variables




B-Splinerectangle N
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B-Spline rectangle (42 d.\%)

19 Iterations

35 SeC. | o
‘591% I'edUCtlon 0.0182
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B-Spline rectangle (20

Cells v

IIIII
thick

I—1.65&+05
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*11.5 min.
.606% redUCUOn 0.0043
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B-Spline C-frame (451 d.v&)
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*408 Iterations
e5h 17min.
*33.8% reduction




Cont. vs. discrete thi

*451 design variables = #1078 design variables = =/ = e
*408 iterations 2200 iterations
*5h 17min. «105h o




Optimization: Dreams?

e One fast, adaptive and autom. optimization code
for
— shape optimization
— optimal sizing
— (topology optimization)
e Requires competences in
— optimization
— computational geometry,mesh handling
— finite elements
— computer science
B e
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